If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=50x+133
We move all terms to the left:
3x^2-(50x+133)=0
We get rid of parentheses
3x^2-50x-133=0
a = 3; b = -50; c = -133;
Δ = b2-4ac
Δ = -502-4·3·(-133)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-64}{2*3}=\frac{-14}{6} =-2+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+64}{2*3}=\frac{114}{6} =19 $
| 7(1+8n)=-441 | | 1/2x=2/15x+1/5 | | x3+11=-5 | | x=16=16=2x-3x | | 6,4=0,8m | | -6x=-39 | | 4b4=16 | | 3(8p+7)=93 | | -2w+14+3=8w+27 | | 2/3*x=-12 | | 3x=2x=1.4 | | 28=8x+6(x+5) | | 2=4-2x+2 | | 92=-4(2r-5 | | 5u+6=12u+62 | | 15+3n=6n+3 | | -10-9z=1-9z | | -3/5*x=9 | | 5x+6x-4x=28+7 | | 0,3b=0,9 | | 3/4*x+4=22 | | 3.25+.65x=6 | | 2/3*x+4=22 | | -3+m=7 | | 576=30-k | | 9-4n=4-5n | | 1x+2-9=8 | | F(5)=2n | | (3x+21)+(6x+15)=180 | | 4p-12=2p-8 | | F(6)=10n | | 26=t−19 |